02/2004

U.S. DEPARTMENT OF ENERGY OFFICE OF FOSSIL ENERGY NATIONAL ENERGY TECHNOLOGY LABORATORY

NETL

CONTACT POINTS

Scott M. Klara

Sequestration Technology Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4864 scott.klara@netl.doe.gov

Dawn Chapman

Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4133 Dawn.Chapman@netl.doe.gov

Bernard McGrail

Pacific Northwest National Laboratory 902 Battelle Boulevard Richland, WA 99352 509-376-9193

Background

There is growing concern that the buildup of greenhouse gases, especially CO_2 , in the atmosphere is contributing to global climate change. One option for mitigating this effect is to sequester CO_2 in geologic formations. Numerous site assessments for geologic sequestration of CO_2 have been conducted in virtually every region of the U.S. For the most part, these studies have involved storing CO_2 in saline aquifers, deep coal seams, of depleted oil and gas reservoirs. Another option, however, is basalt formations. Basalt is an aluminum silicate that contains basic ions, such as sodium and calcium, that can combine with CO_2 .

Basalt formations have not received the attention they deserve with respect to their potential for permanent sequestration of anthropogenic CO₂. Major basalt formations that may be attractive for carbon sequestration occur in the Pacific Northwest, the Southeastern U.S., and at several other locations around the world. Unlike sedimentary rock formations that have received much attention, basalt formations have unique properties that will result in chemically trapping the injected CO₂, thus effectively and permanently isolating it from the atmosphere.

Distribution of major basalt formations in the U.S. along with coal (black), oil(red), and natural gas(blue) power plants

CUSTOMER SERVICE

1-800-553-7681

WEBSITE

www.netl.doe.gov

PARTNERS

Pacific Northwest National Laboratory (PNNL)

COST

Total Project Value: \$400,000

DOE/Non-DOE Share: \$400,000 / \$0

Close-up picture of a basalt grain that has been reacted with supercritical CO_2 - the white crystals coating the grain are calcite.

Because of the very limited study of basalts for carbon sequestration, basic information on injectivity, storage capacity, and rate of conversion of gaseous $\rm CO_2$ to solid carbonates is not available. Preliminary experiments conducted at Pacific Northwest National Laboratory (PNNL) have confirmed that carbonate mineral formation occurs when basalts from the Columbia River Basalt Group (CRBG) are exposed to supercritical $\rm CO_2$. However, insufficient data have been generated from these experiments to permit reliable projections of $\rm CO_2$ conversion rates under large-scale sequestration conditions. Information is also lacking on the ability of basalts from other parts of the U.S. to support in situ mineralization reactions.

Primary Project Goal

The primary goal of this project is to evaluate the capacity of basalt formations for CO₂ storage and to determine the rate of conversion of injected CO₂ to carbonates. The principal focus is on the Central Atlantic Mafic Province in the Southeastern U.S., but there is also interest in the Columbia River Basalt Group in the Pacific Northwest.

Objectives

- To determine mineralization kinetics for CO₂ conversion to carbonates.
- To conduct tomography on the Basalt Flow Top.
- To determine CO₂ storage capacity in basalt formations.

Picture of an outcrop of Columbia River Basalt showing the multiple layers resulting from the periodic lava eruptions

Accomplishments

- Completed a set of dissolution kinetics measurements as a function of temperature and pH on Columbia River basalt.
- Carbonate mineralization was verified by optical and scanning electron microscopy, x-ray diffraction, and Raman spectroscopy.
- The reservoir capacity of the Columbia River Basalt Group was estimated using existing geologic data obtained from prior DOE-RW studies.
- Core samples and geologic data for the Central Atlantic Mafic Province basalts have been obtained.

Benefits

Because of concern over the impact of greenhouse gases, particularly CO_2 , on global climate change, considerable effort is being expended evaluating the potential of CO_2 sequestration to mitigate the buildup of CO_2 in the atmosphere. Success of this project will expand the viable geologic options for CO_2 sequestration in the continental U.S. and provide heretofore unexplored options for CO_2 sequestration in developing countries, such as India and China.